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SETUP	

Particles in a lattice 
 
A space                associated to each particle 
  

Particles interact with those nearby in a uniform way h = 
hermitian matrix of small size  (            ), r  the number of 
nearby particles). 

Space of the joint system = tensor product 
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hi matrix h located at position i.    

Hamiltonian 

Huge!! 



SETUP	

States with minimal energy = eigenvector of 
Called ground states.  
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Spectral Gap: 
Energy to pay to jump from ground to excited states  
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ΔN = λ1(N) − λ0(N)€ 

λ0(N)

Eigenstates of             called elementary excitations.  
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λ1(N)

Normalized vectors in           are the states of the system (encode all properties) 
 
Hamiltonian H = Energy observable :  The energy of a state is 
 
Energy levels of the system = eigenvalues of H.  
 

€ 

⊗
i
Hi

ψ H ψ

Eigenvectors are stable states since the evolution eq. is 
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Back	to	school.	The	scien1fic	method	

Two steps: 
 
1.- Model the interactions in 
the system = Hamiltonian 
 
2.- Give predictions for the 
observable quantities 

Find a good (efficient) description of the ground state which 
allow to compute such observable quantities and (optimally) 
help in understanding the physics of the system 

TNS	



The	good	descrip1on.	Does	it	exist?	
Find a good (efficient) description of the ground state which 
allow to compute such observable quantities and (optimally) 
help in understanding the physics of the system 

In principle yes (counting parameters): 
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Hamiltonian: Number of parameters 
independent of system size.  
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Hilbert space: exponentially big 



The	good	descrip1on.	How	does	it	look	like?	
The	area	law.	

Find a good (efficient) description of the ground state which 
allow to compute such observable quantities and (optimally) 
help in understanding the physics of the system 

A	

Ground states of local gapped 
Hamiltonians verify the AREA LAW 

S(ρA ) ≤ c ∂A



The	good	descrip1on.	How	to	enforce	the	area	
law.	A	guess	
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PEPS	

MPS	

D = bond 
dimension 



The	good	descrip1on.	It	was	a	good	guess!	

Theorem (Hastings 2006, Molnar-Schuch-Verstraete-Cirac 2014): 
If a Hamiltonian H has a gap and, for each energy E, the density of states with energy 
smaller than E scales only polynomially with the system size, then the size of the 
PEPS tensor required to approximate the ground state of H within error E in a system 
of size N scales quasi-polynomially with N/E 
 

Theorem (Hastings 2007, Arad-Landau-Kitaev-Vazirani 2013): 
In 1D, if a Hamiltonian is local and has a gap, then the bond dimension of the MPS 
tensor required to approximate the ground state of H within error E in a system of size 
N scales sublinearly with N/E.  
 



The	good	descrip1on.	Does	it	exist?	
Find a good (efficient) description of the ground state which 
allow to compute such observable quantities and (optimally) 
help in understanding the physics of the system 

Natural questions: 
 
Given a Hamiltonian. How to find the PEPS approximation to the 
ground state? How to compute quantities from it? 
 
Numerical methods (DMRG, ITBD, TDVP, IPEPS …).  
NOT COVERED IN THIS COURSE. 
 
Given a PEPS. How to understand the physics of the system. 
 
THIS COURSE 



Is	this	all?	
NO!  We did not talk yet about GAPLESS Hamiltonians. That is, 
about PHASE TRANSITIONS. 

In phase transitions one expects a self-similar behavior which is 
captures by the following type of TNS: 

			MERA	

NOT COVERED IN THIS COURSE 



Tensor	Network	States	and	the	Classifica1on	of	
Quantum	Phases	



Quantum	phases	

What is a phase? 

Temperature 

Phase transitions 

A phase should be something like: “the equivalence class of all states of matter 
with similar properties” 

At zero temperature: Quantum phases. 
 
They include very exotic phenomena: topological 
dependency, superconductivity, spin liquids, etc. 
 

Crystal Spin liquid 

Strength of repulsion terms 



PHASE = an equivalence relation on the set of finite range interactions  
 

Two systems governed by interactions                       are in the same phase iff 

there is a smooth path of interactions                            and a constant c>0 s.t 

the gap              of the Hamiltonian                              is                    for all   

     

Quantum	phases	
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Two main reasons for this definition: 
 
It is stable against small errors in the interactions.  
 
Observable quantities on the ground state behave smoothly through the path 
(no phase transitions).  
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THE	AIM.	DIFFERENT	THAN	USUAL	
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H(θ) = cos(θ ) Si ⋅ Si+1 + sin(θ) (Si ⋅ Si+1)
2
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Usual approach to quantum phases THE AIM 

Equivalence relation in the set of 
ALL possible interactions. 
 

Periodic table of locally 
interacting quantum spin systems 
 

Phase diagram of a particular parametrized model 
 



Periodic	table	in	1D.	Ingredients	

Ingredient 1 (Hastings 2007, Arad et al.): Matrix Product States (MPS) approximate 
well ground states of Hamiltonians 
 

From interactions to states 

Ingredient 2 (Nachtergaele 1995): A lower bound on the spectral gap of certain 
(parent) Hamiltonians having MPS as ground states. 

Ingredient 3 (Verstraete et al. 2005, Perez-Garcia et al. 2007): A good description 
of renormalization transformations in MPS and the structure (phase invariants) of 
their fixed points.  
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MPS1
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MPS2
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RFP1
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RFP2
Gap iff same 
invariants 
(Ingredients 2,3) 

Renormalization flow.  
Always gap.  
Ingredient 2 

Enough to start with MPS. Ingredient 1 



Matrix	Product	States/Operators	

MPSA = tr(Ai1Ai2…AiL )ei1 ⊗ ei2 ⊗…⊗ eiL
i1i2…iL=1

d

∑

ρMPOA
= tr(Ai1, j1…AiL , jL )

i1i2…iL , j1 j2… jL=1

d

∑ Ei1, j1
⊗…⊗ EiL , jL

Ai : Matrices of size D 

Ai, j : Matrices of size D 

A bit more of detail. 
 

L 



Fundamental	Theorem	of	MPS/MPO	

⊕i (MDi
⊗ ρi

L ) = span{Ai1…AiL | i1,…, iL =1,…,d}

      can be diagonalized by blocks so that for all L>D5 one gets that Ai

States associated to different blocks are asymptotically orthogonal.  
Moreover, the canonical form is unique, in the sense that two MPS in 
canonical form 
 
If and only if there exists an invertible an block-diagonal map  Y so that: 
 

MPSA = MPSB

YAiY
−1 = Bi   ∀i

PG, Wolf, Verstraete, Cirac  QIC 2007 + IEEE Trans. Inf. Theory 2010 + … 



Corollary:	characteriza1on	of	symmetries	

g∈G! ug ∈Md

Let G be a compact group (associated to the symmetry present in the system) and 

A representation of G. 
 
The MPS given by A is invariant under the symmetry 
 
 
If and only if there exist a projective representation of G so that 
 

MPSA = ug
⊗L MPSA

VgAiVg
* = ug(i, j)

j
∑ Aj   ∀i

H 2 (G,U(1))

PG, Wolf, Sanz, Verstraete, Cirac, Phys. Rev. Lett.  2008 



PERIODIC TABLE IN 1D without symmetries and PBC: 
Phases indexed by degeneracy of ground space 

Pollmann, Berg, Turner, Oshikawa, Phys. Rev. B. 81, 064439 (2010) 
Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011) 
Fidkowski, Kitaev, Phys. Rev. B 83, 075103 (2011) 
Schuch, Pérez-García, Cirac, Phys. Rev. B 84, 165139 (2011) 
Haegeman, Pérez-García, Cirac, Schuch, Phys. Rev. Lett. 109, 050402 (2012) 

Periodic	table	in	1D.	Solu1on	

PERIODIC TABLE IN 1D with symmetries and PBC: 
Phases indexed by equivalent classes of projective representations 
 H 2 (G,U(1))

Boundary conditions make the classification more complicated: Ogata’s talk 



The	generic	case	
Collins, González-Guillén, PG, Commun. Math. Phys.  2013 

The canonical form allows to identify the set of MPS with the group U(dD). There is 
a natural way to sample MPS via the Haar measure in U(dD). 

Theorem: Except for exponentially small probability (in D), for all observable O 
supported on r consecutive spins, we have 
 
 
 
 
That is, generic MPS behave as the maximally mixed state.  

MPSA O MPSA −
tr(O)
dr

≤
d 2r

D
1
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A good parametrization of ground states in 2D 
 

Projected Entangled Pair States (PEPS). 2D version of MPS 
 

(Hastings 2007, Molnar et al. 2014). 

In	2D?	

The problem is much more difficult due to the existence of topological order: 
1.  Dimension of the ground space depends on the topology (sphere vs. torus) 
2.  All ground states are locally indistinguishable  
3.  Elementary exictations behave as quasi-particles with exotic braiding and fusion 

rules. 

Fortunately, we still have Ingredient 1:  



PEPS	

MES =
1
D
(e1⊗ e1 +…+ eD ⊗ eD )

A =CD ⊗CD ⊗CD ⊗CD →Cd

PEPSA = A⊗vertices ( MES ⊗edges )

PEPSA = PEPSB ⇔∃Y,Z : A(Y ⊗ Z ⊗Y −1⊗ Z −1) = B

Fundamental Theorem of PEPS 

Implies the corresponding characterization of symmetries 



Theorem: The PEPS given by A has the topological order given by G 
(excitations are representations of the Hopf algebra D(G): Drienfeld Double 

of G) if: 
 

Topological	order	in	PEPS	

A(Lg ⊗ Lg ⊗ Lg
* ⊗ Lg

*) = A

Let G be a finite group and consider the left regular representation: 

Schuch, Cirac, PG, Annals of Physics 2010 

g∈G→ Lg ∈MD=|G|

Generalized by Verstraete’s group for a general fusion algebra 

Theorem (Cirac, PG, Schuch, Verstraete, arXiv:1606.00608): Those cover 
all phases that contain a RFP.  

Are there 2D phases without RFP?  J. Haah (2014): in 3D YES. 



Structure	of	the	course	

1.  Basics	of	MPS:	transfer	operator,	expecta1on	values,	RFP	

2.  The	Fundamental	Theorem	of	MPS	
	
3.  Parent	Hamiltonian	of	MPS	and	its	spectral	gap.	

4.  Topological	order	in	2D	and	its	characteriza1on	in	PEPS	



Appendix.	Box-leg	nota1on	for	tensors	

v	 A	

Each leg = one index 

Joining leg = tensor contraction 
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Scalar product Matrix Multiplication 
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