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Abstract
Completely positive, trace preserving (CPT) maps and Lindblad master

equations are both widely used to describe the dynamics of open quantum
systems. The connection between these two descriptions is a classic topic in
mathematical physics. One direction was solved by the now famous result
due to Lindblad, Kossakowski and Gorini, who gave a complete characterisa-
tion of the master equations that generate completely positive semi-groups.
However, the other direction has remained open: given a CPT map, is there a
Lindblad master equation that generates it (and if so, can we find it’s form)?
This is known as the Markovianity problem. Physically, it is asking how one
can deduce underlying physical processes from experimental observations.

We give a complexity theoretic answer to this problem: it is NP-hard.
We also give an explicit algorithm that reduces the problem to integer semi-
definite programming. Together, these results imply that solving the Marko-
vianity problem is equivalent to solving P=NP. However, we also show
that if the system dimension is fixed (relevant for current quantum process
tomography experiments), our algorithm scales efficiently in the required
precision, allowing an underlying Lindblad master equation to be determined
efficiently from even a single snapshot in this case. This work also leads to
a complexity-theoretic solution to a related long-standing open problem in
probability theory.
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1 Introduction
Noise abounds in quantum mechanical systems, so it’s no surprise that the math-
ematics of open quantum systems permeates many areas of quantum theory. In
quantum information theory, noisy evolution is usually modelled by completely
positive, trace preserving (CPT) maps. CPT maps are often referred to as quantum
channels, as they play the same role in quantum information theory as classical
channels (stochastic maps) play in classical information theory: they give a discrete,
black-box description of how input states are transformed into output states.

Just as in classical information theory, questions ranging from communication
capacities to error-correction and fault-tolerant computation benefit from abstract-
ing away the underlying physics in this way [1]. CPT maps also arise naturally in
experimental measurement of quantum dynamics, when a complete “snapshot” of
the dynamics is reconstructed via quantum process tomography [1]. The recon-
structed snapshot is a CPT map describing how initial states are transformed by
the evolution into states at the time of measurement.
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Noisy evolution in other areas of quantum physics, on the other hand, is usually
modelled by master equations. These directly describe the underlying physical
processes governing the evolution, in the form of a differential equation for the
time-evolution of the density matrix. They are frequently used to model realistic
experimental set-ups, where external noise and dissipation must invariably be
accounted for, especially in quantum optics [2] and condensed-matter physics [3].

In describing a noisy evolution by a master equation, there is an implicit
assumption that the effect of the external environment on the system’s evolution
can be described in terms of the system’s degrees of freedom alone. Given this
assumption, the master equation must necessarily be Markovian. One justification
for this is if the underlying physical processes are forgetful—as they commonly
are to a good approximation. Conversely, if the Markovian assumption doesn’t
hold, then there is no way to decribe the evolution physically without enlarging the
system being modelled to include (some of) the environment degrees of freedom.
Mathematically, a Markovian master equation generates a one-parameter (time t)
semi-group (evolving for time t and then time s is equivalent to evolving for time
t+ s) of CPT maps (the evolution must be completely positive and trace preserving
at all times if probabilities of measurement outcomes are to be positive and sum to
one).

1.1 The Quantum Problem
The connection between these two descriptions of open quantum systems—the
black-box, discrete-time description of CPT maps, and the continuous-time, phys-
ical description of master equations—is a classic topic in mathematical physics.
Two questions naturally arise: given a master equation, does it generate a a com-
pletely positive evolution (and if so which CPT maps does it produce)? Conversely,
given one or more CPT maps, is there an underlying Markovian master equation
that generates them (and if so which one)? These questions can equivalently be
stated more mathematically: given a linear operator, does it generate a completely
positive semi-group? Conversely, given one or more CPT maps, are they members
of a completely positive semi-group?

In seminal papers from the 1970’s, Lindblad [4], Gorini and Kossakovski [5]
gave a complete answer to the first question (for finite dimensional systems∗). They
derived the general form—now known as the Lindblad form—for the generators of
one-parameter completely positive semi-groups. Just as any discrete transformation
of quantum states must be completely positive and trace-preserving if probabilities
are to remain positive and normalised for any input state, a master equation must

∗For subtleties invovled in finding the most general form of a generator in infinite-dimensional
quantum systems, see Ref. [6].
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be of Lindblad form if it is to be physical, since an evolution that is not of this form
will necessarily lead to negative probabilities.∗

The converse question, however, has remained open. For the case of a single
CPT map, we will refer to the problem of deciding whether it is a member of a
completely positive semi-group as the Markovianity problem, since CPT maps that
are generated by a Lindblad master equation are said to be Markovian.† The main
result of this work is a complexity-theoretic answer to the Markovianity problem
(which will be made more rigorous later):

Theorem 1 The Markovianity problem is NP-hard.

Indeed, our proof easily extends to more general problems, such as deciding
whether a family of CPT maps are members of the same completely positive
semi-group, or computing any “measure” of Markovianity [7–12].

“Hardness” here is in the rigorous complexity-theoretic sense, which will be
explained precisely below. It concerns the scaling of computational effort as
a function of the size of the problem, i.e. as a function of the total amount of
information required to specify the CPT map. But a more refined analysis can
break down the overall problem size here into two components: the dimension of
the system, and the precision to which the CPT map is specified. We will analyse
the complexity of the Markovianity problem with respect to both these parameters,
and show that the NP-hardness is a consequence of scaling of the dimension.‡

We will also show—hinted at already in Ref. [7]—that for a fixed dimension, the
Markovianity problem can be decided efficiently in the precision. Thus, though
the problem in general is (very likely) intractable, in practical contexts arising in
current quantum experiments, where the dimension is invariably small, the question
of whether a given (family of) CPT map(s) is consistent with Markovian dynamics

∗There exists a large literature on “non-Markovian master equations”, which are not of Lindblad
form. These can provide a useful phenomenological description of quantum evolution. But since
they necessarily predict negative probabilities for some physical measurement outcomes, they are
only valid for a restricted set of “allowed” initial states. If the system is prepared in a state outside
of this allowed set, the non-Markovian master equation becomes invalid.

†Note that this term is not used consistently throughout the literature. Here, we stick to the stan-
dard use of the term Markovian in the mathematical physics literature to mean the time-homogeneous
Markovianity problem, in which the master equation is assumed to be time-independent. Some-
times, in particular in the context of condensed-matter physics, master equations are also referred to
as being Markovian if they are of Lindblad form, but may be time-dependent. One could also adopt
the established classical terminology and call the problem considered in this work the quantum
embedding problem.

‡Note that the relevant parameter here is the system dimension, not the number of qubits (the
base-2 logarithm of the dimension), as the amount of information required to specify the CPT
map—the problem size—scales with the (square of) the dimension. The time required to perform
process tomography scales only polynomially in the dimension, so is efficient in this context.
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can be tested efficiently from even a single snapshot in time. We will give an
explicit algorithm in this case, along with a careful analysis of its scaling:

Theorem 2 For any fixed physical dimension the Markovianity problem can be
solved in a run-time that scales polynomially (both in the number of digits to which
the entries of the CPT map are specified, and the precision to which the answer
should be given).

Theorem 1 proves that deciding Markovianity is at least as hard as any problem
in the complexity class NP. The algorithm of Theorem 2 reduces the problem to
solving an integer semi-definite program, a problem in the class NP. Together, these
imply that:

Corollary 3 Solving the general Markovianity problem is equivalent to solving
the (in)famous P=NP question.

1.2 The Classical Problem
The analogous questions can equally well be posed for classical dynamics. In fact,
the resulting mathematical problems are far older and more extensively studied.
The classical analogue of a CPT map is a stochastic map, which, in the context
of information theory, does indeed describe a classical channel. The classical
analogue of a master equation is a continuous-time Markov chain, and the Markov-
chain analogue of the Lindblad form can be found in any good text book on Markov
processes (see e.g. Ref. [13]).

However, the converse question: given a stochastic map, can it be generated by a
continuous-time Markov chain, has remained a thorny open problem in probability
theory for over 70 years! It is known as the embedding problem for stochastic
maps, and was first posed at least as long ago as 1937 by Elfving [14]. Though it
has been the subject of investigation over the many intervening decades [15–17],
the general embedding problem has remained open [18] until now.

Although there is a sense in which the classical embedding problem can be
viewed as a special case of the quantum Markovianity problem, mathematically the
two are inequivalent: a result concerning one does not necessarily imply anything
about the other. However, it turns out that very similar techniques can be used to
tackle both problems, allowing us to also show that:

Theorem 4 The embedding problem is NP-hard.

This finally resolves the long-standing embedding problem, in the sense that
no efficiently computable (polynomial-time) criterion for embeddability can exist
unless P=NP, and conversely the existence of any such efficiently computable
criterion would imply P=NP. Rather than duplicating everything for the classical
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case, we will focus in this paper on the somewhat more complicated quantum
problem, and then point out how the results can be adapted to the older classical
embedding problem. A more detailed exposition of the classical result can be
found in Ref. [19].

1.3 Implications for Physics
The Markovianity and embedding problems are not only of mathematical interest.
They are also crucial problems in physics. What is the best possible measurement
data that an experimentalist could conceivably gather about a system’s dynamics?
They could, for example, repeatedly prepare the system in any desired initial
state, allow it to evolve for some period of time, and then perform any desired
measurement. In fact, by choosing a tomographically complete bases of initial
states and measurements, and carrying out this procedure only a finite number of
times, it is already possible to reconstruct a complete “snapshot” of the system
dynamics at any particular time to arbitrary accuracy. In the quantum setting, this
is quantum process tomography [1], but the general principle obviously applies
equally well in the classical setting. Remarkably, thanks to the dramatic progress
in experimental control and manipulation of quantum systems over recent years,
this is no longer a theoretical pipe-dream even for quantum systems. Full quantum
process tomography is now routinely carried out in many different physical systems,
from NMR [8, 20–22] to trapped ions [23, 24], from photons [25, 26], to solid-state
devices [27].

A tomographic snapshot tells us everything there is to know about the evolution
at the time t when the snapshot was taken. Each snapshot gives us a dynamical
map (a stochastic map in the classical setting, a CPT map in the quantum), which
describes how any initial state of the system will evolve into a state at time t.
All physical properties of the system at time t are then fully determined. In the
quantum case, the expectation value of any physical observable M is given by
Born’s rule, whereas in the classical case it is given by a straight-forward average.
Any physical measurement can therefore be viewed as an imperfect version of
process tomography, since it gives partial information about the snapshot, and with
sufficient measurement data the full snapshot can be reconstructed. Thus the most
complete data that can be gathered about a system’s dynamics consists of a set of
snapshots, taken at different times during the evolution.

Given one or more snapshots, understanding the underlying physical processes
typically amounts to reconstructing the system’s dynamical equations and Liouvil-
lian. Clearly, if we can find a set of Markovian dynamical equations describing the
dynamics whenever these exist (and there is no a priori way of knowing whether
they exist or not), we can also determine whether they exist. So understanding the
physics governing an experimental system involves solving the Markovianity or
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embedding problem (or their generalisations to a family of CPT or stochastic maps,
in the case of multiple snapshots).

Thus the results of this work have a surprising implication for physics: no
matter how much measurement data we might gather about the behaviour of a
physical system, deducing its underlying Markovian dynamical equations—if the
dynamics can be traced back to such a process—is fundamentally an intractable
problem. And this extends to various closely related physical problems, such
as finding the dynamical equation that best approximates the data, or testing a
dynamical model against experimental data.

Given their importance to physics, it is not surprising that numerous heuristic
numerical techniques have been applied to tackle the Markovianity and embedding
problems [8–12]. But these methods give no guarantee of finding the correct answer,
or even any indication as to whether the correct answer has been found. One
implication of the results of this work is that any such technique must necessarily
fail in the general case (although for fixed physical problem dimension, they can
of course prove valuable). The algorithm given in Section 5, which we prove is
efficient for fixed dimension, improves on previous methods in that it guarantees
to give the correct answer. It can also be extended to provide a similarly rigorous
measure of the degree of Markovianity [7].

1.4 Outline
After introducing the necessary notation and recalling basic concepts in Section 2,
Section 3 develops a careful and rigorous formulation of the Markovianity problem
that will allow us to apply tools from complexity theory. Section 4 then gives a
complexity-theoretic answer to the Markovianity problem: it is NP-hard. Techni-
cally, NP-hardness alone does not prove equivalence to P=NP; it could be that the
Markovianity problem is much harder, so that even P=NP would not be enough to
solve it. Section 5 completes the proof of equivalence by giving an explicit algo-
rithm that reduces the Markovianity problem to solving an NP-complete problem.
We give a careful analysis of the complexity of this algorithm, thereby proving
that if the dimension is fixed, its scaling is polynomial in the precision required.
In Section 6 we briefly explain how these proofs can be adapted to show that the
classical embedding problem, too, is NP-hard (a fuller version appears in Ref. [19]).
Finally, Section 7 concludes with a discussion of the consequences of these results.

2 Preliminaries
In what follows, we will restrict our attention to finite-dimensional spaces and maps.
It will be convenient to choose a concrete representation for the CPT maps. Since a
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CPT map E is a linear map on the d2–dimensional vector spaceMd of operators on
a d–dimensional Hilbert spaceH, it can be represented by a d2 × d2–dimensional
matrix E in the usual way. More explicitly, if we reshape the density matrix ρ as a
vector ‖ρ〉 with elements 〈i, j‖ρ〉 = ρi,j in some orthonormal basis, E has matrix
elements

E(i,j),(k,l) = 〈i, j‖E(|k〉〈l|)〉. (1)

The action of the channel E is then given by matrix multiplication, ‖E(ρ)〉 = E‖ρ〉,
and the composition E1◦E2 of two channels E1 and E2 is given in this linear operator
representation by the matrix product E1E2.

The matrix E is also closely related to the more familiar Choi-Jamiołkowski
state representation [28, 29], given by the state σ = (E ⊗ I)(ω) obtained by
applying the channel to one half of the (unnormalised) maximally entangled state
ω =

∑
i,j |i, i〉〈j, j|, defined in some fixed orthonormal product basis ofMd⊗Md

(I being the identity map). Define the involution Γ by its action on this basis,

|i, j〉〈k, l|Γ = |i, k〉〈j, l| . (2)

The Choi-Jamiołkowski and linear operator representations of E are then related
by E = σΓ.

Completely positive semi-groups of CPT maps Et arise naturally as solutions of
a Markovian quantum master equation describing the dynamics of the density ma-
trix ρ (indeed, the continuous semi-group structure is essentially the only possible
one if we require the evolution to be describable at any time t ≥ 0 [30, 31]):

dρ

dt
= L(ρ), (3)

where L is the system’s Liouvillian. If the solutions ρ(t) = E(ρ(0)) are to be
completely positive for all t ≥ 0, then the Liouvillian L must be of Lindblad
form [4, 5]:

dρ

dt
= L(ρ) = i[ρ,H] +

∑
α,β

Gα,β

(
FαρF

†
β −

1

2
{F †βFα, ρ}+

)
. (4)

Here, H is Hermitian, and can be interpreted as the Hamiltonian of the system,
G ≥ 0 and {Fα} describe the decoherence processes, and {A,B}+ = AB +BA
denotes the anti-commutator. A Markovian channel is one that is a member of such
a semi-group, i.e. one that is generated by some L of the above form.

It will again be convenient to represent the generator L by a matrix, in the same
way as for the channels. In the linear operator representation, a Markovian channel
E = eL is one with a generator L such that eLt is CPT for all t ≥ 0, and it is this
that makes the linear operator representation convenient for our purposes. It is not
difficult to translate Eq. (4) into conditions on L (see Ref. Section 3.2 or Ref. [7]).

8



The classical case is analogous. A stochastic map on a finite d–dimensional
state space is represented by a d× d–dimensional stochastic matrix P , which acts
on d–dimensional probability vectors p. An embeddable stochastic matrix P = eQ

is then one with a generatorQ such that eQt is stochastic for all t ≥ 0, i.e.Q defines
a continuous-time Markov chain. The conditions on Q analogous to the Lindblad
form of Eq. (4) (or, more precisely, to Lemma 8) are given by [13]:

(i). Qi 6=j ≥ 0 ,

(ii).
∑

iQi,j = 0 .

For consistency with the quantum notation, we are adopting the convention that
probability distributions are column vectors, and maps act on them to the right.
Thus the normalisation condition applies to the column-sums rather than the row-
sums. Note, however, that this runs counter to the almost universal convention of
using row-vectors in the probability theory literature.

3 The Quantum Problem

3.1 The Computational Markovianity Problem
In order to apply tools from complexity theory to study the Markovianity problem,
we will need to define the problem in such a way that the problem size—the amount
of information needed to specify an instance of the problem—is well-defined. Even
in the finite-dimensional case, this requires a little care. Since CPT maps form a
continuous set, there may exist Markovian and non-Markovian channels that are
arbitrarily close (in any distance measure). Thus, to guarantee an unambiguous
answer in all cases, the channel would need to be specified to infinite precision.

There are essentially two standard ways of dealing with this in complexity
theory. But, before we do so, it is instructive to first take a step back and recall
some of physical motivation for the problem. In measuring a tomographic snapshot
of a system’s dynamics, there will always be some experimental error, and it makes
little sense to require an answer that is more precise than this error. Mathematically,
this suggests that we should consider the Markovianity problem solved if we can
answer the question for some map that is a sufficiently close approximation to the
one we were given.

This is the intuitive idea behind the following weak-membership formulation
of the Markovianity problem (cf. Ref. [32], which uses a weak-membership formu-
lation of the separability problem):
Problem 5 (MARKOVIAN CHANNEL)
Instance: (E, ε): CPT map E, precision ε ≥ 0.
Question: Assert either that:
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• for some mapE ′ with ‖E ′−E‖ ≤ ε, there exists a map L′ such thatE ′ = eL
′

and eL
′t is CPT for all t ≥ 0;

• for some CPT map E ′ with ‖E ′ − E‖ ≤ ε, no such L′ exists.

Here, we do not specify the matrix norm ‖.‖ in the problem definition. However,
given the equivalence of norms on finite-dimensional spaces, with at most a poly-
nomial prefactor in the dimension relating one norm to the other, we can leave the
norm open for now.

Note that, if E is close to the boundary of the set of Markovian channels, then it
will be close to both Markovian and non-Markovian maps, and both assertions will
be valid simultaneously. The physical interpretation in such a case would simply be
that the snapshot was not measured to sufficient precision to allow an unambiguous
answer. (There are other ways to formulate weak-membership problems, but they
are essentially equivalent [33].) The other standard approach would be to restrict
E to have rational entries, but this is less natural in the present context.

Because there are cases in which both answers may be valid, the weak-mem-
bership formulation of MARKOVIAN CHANNEL is not formally a decision problem.
This by definition rules it out of the decision class NP, where it by rights belongs.
Whilst it is possible to reformulate it as a decision problem, we will avoid getting
bogged down in these complexity theoretic technicalities here, and accept that
MARKOVIAN CHANNEL is not in NP. (See Ref. [33] for a discussion of similar
issues in the context of the separability problem.)

MARKOVIAN CHANNEL carries the implicit promise that E is a CPT map. It
is natural to ask whether this affects the complexity of the problem. After all, if a
tomographic snapshot is measured experimentally, it is very unlikely to be either
precisely trace-preserving or completely positive. This motivates the definition of
the following variant of the Markovianity problem, which accounts for non-CPT
maps E:

Problem 6 (MARKOVIAN MAP)
Instance: (E, ε, ε′): Map E, precision parameters ε > ε′ > 0.
Question: Assert either that:

• for some mapE ′ with ‖E ′−E‖ ≤ ε, there exists a map L′ such thatE ′ = eL
′

and eL
′t is CPT for all t ≥ 0;

• for some CPT map E ′ with ‖E ′ − E‖ ≤ ε, no such L′ exists;

• no CPT map E ′ exists for which ‖E ′ − E‖ ≤ ε′.
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It is not difficult to see that the two problems, MARKOVIAN CHANNEL and
MARKOVIAN MAP, are in fact equivalent. Clearly, MARKOVIAN CHANNEL is a
special case of MARKOVIAN MAP, in which the third assertion is always false (E
itself fulfils the requirements of one or other of the first two assertions). Conversely,
complete-positivity of a map E is equivalent to positivity of the Choi-Jamiołkowski
matrix ρ = EΓ, and E is trace-preserving iff the partial trace of ρ is the identity
matrix. So finding the closest CPT map E ′ to E is equivalent to finding the
closest positive-semi-definite, suitable matrix ρ′ to ρ. Indeed, if we fix the norm
in MARKOVIAN MAP to be the Frobenius norm∗ ‖A‖F := (

∑
i,j A

2
i,j)

1/2, then not
only do we have ‖E ′−E‖F = ‖ρ′−ρ‖F, but also, if we minimise ‖ρ′−ρ‖2

F subject
to the above semi-definite constraints, the objective function becomes a convex
quadratic form. The problem can therefore be transformed into a semi-definite
program using standard techniques [34], allowing it to be solved efficiently to give
E ′ and ‖E ′ − E‖F. (More precisely, we can compute a bound on ‖E ′ − E‖F that
can be made exponentially tight with only polynomial overhead.) Thus, either we
will conclude that the third assertion is valid, or we will succeed in transforming
the problem into a MARKOVIAN CHANNEL instance. This proves the following
complexity-theoretic (Karp) equivalence†:

Theorem 7 MARKOVIAN MAP = MARKOVIAN CHANNEL.

3.2 The Computational Lindblad Generator Problem
It is not immediately clear how one would go about solving a MARKOVIAN

CHANNEL or MARKOVIAN MAP instance. In order to answer this, we will need to
establish certain properties of the generators L of Markovian maps E = eLt. We
will call such L Lindblad generators. The following Lemma is taken directly from
Ref. [7], which in turn is a slight modification of the argument given in Ref. [4], and
gives an efficient criterion for deciding whether or not L generates a one-parameter
CPT semi-group, i.e. whether it is of Lindblad form.

Lemma 8 A map L is a Lindblad generator iff all of the following hold:

(i). LΓ is Hermitian.
∗The Frobenius norm is convenient for two reasons: firstly, the square of the norm-distance

‖A − B‖2F is strictly convex; secondly, it is invariant under permutation of matrix elements, in
particular ‖AΓ‖F = ‖A‖F.

†Throughout this paper, we will only consider Karp-reductions—i.e. polynomial-time reduc-
tions where only a single invocation of the oracle is allowed—and Karp-equivalence, the strongest
forms of reduction and equivalence.
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(ii). L fulfils the normalisation 〈ω| L = 0, where the maximally entangled
state vector |ω〉=

∑
i |i, i〉/

√
d is expressed in the same basis in which

the involution Γ is defined.

(iii). L satisfies
(1− ω)LΓ(1− ω) ≥ 0 (5)

where ω = |ω〉〈ω|.

Maps LΓ satisfying Eq. (5) are called conditionally completely positive (ccp).
We can assume without loss of generality that the matrix E in a MARKOVIAN

MAP or MARKOVIAN CHANNEL instance is diagonalisable (with respect to similar-
ity transforms), non-degenerate, and full-rank. (Such matrices are dense in the set
of all matrices, so we can always replace E with a neighbouring map that has these
properties, and decrease ε (keeping ε′ fixed in the case of MARKOVIAN MAP) such
that the outcome is unchanged.) The Jordan decomposition of a diagonalisable
channel has the form

E =
∑
r

λr |rr〉〈lr| +
∑
c

λc |rc〉〈lc| + λ̄c F(|rc〉〈lc|). (6)

where r labels the real eigenvalues, c the complex ones, and |rk〉〈lk| are orthonor-
mal (but typically not self-adjoint) spectral projectors formed from the left and right
eigenvectors 〈lk| and |rk〉 of E associated with the same eigenvalue λk. The fact
that the eigenvalues come in conjugate pairs and that the corresponding spectral
projectors are related via the “flip” operation,

F
(∑

i,j

ci,j |i, j〉
)

=
∑
i,j

c̄i,j |i, j〉 (7)

extended to operators as

F
(∑
(i,j),(k,l)

c(i,j),(k,l) |i, j〉〈k, l|
)

=
∑

(i,j),(k,l)

c(i,j),(k,l) |j, i〉〈k, l| , (8)

is a straightforward consequence of Hermiticity of CPT maps. It is easy to show
that all CPT maps are necessarily Hermitian.

Inverting the relationship E = eL, we obtain a generator L = logE from
any channel E, where the matrix logarithm is defined via the logarithm of the
eigenvalues. Of course, the logarithm is not unique. It has a countable infinity of
branches, since the phase of each eigenvalue is only determined modulo 2π. E is
Markovian iff there exists some branch of the logarithm that has Lindblad form,
i.e. that satisfies Lemma 8. So, to check if a channel is Markovian, we must check
whether any branch of its logarithm has Lindblad form.
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Some of the branches can be ruled out immediately, using the condition that
Lindblad generators must also be Hermitian maps (Condition (i) from Lemma 8),
which imposes that eigenvalues come in conjugate pairs. The remaining set of
possible Lindblad generators for E can be parametrised by

Lm := logE = L0 + 2πi
∑
c

mc

(
|lc〉〈rc| − F(|lc〉〈rc|)

)
= L0 +

∑
c

mcAc, (9)

where L0 is any fixed branch of the logarithm, e.g. the principle branch (defined by
taking the principle branch in the logarithm of each eigenvalue), and each branch
is characterised by a set of at most d2/2 integers mc (one for each pair of complex
eigenvalues). We introduce the matrices Ac, defined by

Ac := 2πi
(
|lc〉〈rc| − F(|lc〉〈rc|)

)
(10)

for notational convenience.
The Ac are fully determined by L0, or, equivalently, by E. The following

lemma summarises those properties ofAc and L0 that are easy to check, and follows
immediately from the first two conditions of Lemma 8 and Eqs. (9) and (10):

Lemma 9 If Lm = L0 +
∑

cmcAc parametrise the logarithms of a CPT map E
as in Eq. (9), then L0 and Ac necessarily satisfy the following properties:

(i). L0 and Ac are simultaneously diagonalisable.

(ii). Ac are mutually orthogonal, rank-2 matrices with non-zero eigenvalues
±2πi.

(iii). L0 and Ac satisfy the normalisation 〈ω| L0 = 〈ω|Ac = 0.

(iv). The two eigenvalues of L0 corresponding to the non-zero eigenvalues of
any Ac form a conjugate pair.

(v). The right and left eigenvectors |r1,2〉and 〈l1,2| associated with a conjugate
pair of eigenvalues are related by |r2〉= F(|r1〉) and 〈l2| = F(〈l1|).

The last two properties of pairs of eigenvalues and eigenvectors can be stated more
concisely as:

(iv). LΓ
0 and AΓ

c are Hermitian matrices.

Together with the ccp condition of Lemma 8,

(1− ω)LΓ
0 (1− ω) +

∑
c

mc(1− ω)AΓ
c (1− ω) ≥ 0, (11)
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this gives a criterion for deciding whether Lm = L0 +
∑

cmcAc generates a CPT
semi-group. Note that it is possible for Lm to be ccp even if L0 is not.

The characterisation of Lindblad generators in Lemma 8 motivates the definition
of a new weak-membership problem:

Problem 10 (LINDBLAD GENERATOR)
Instance: (L0, δ): Map L0, precision δ.
Promise: There exists a map L′0 with ‖L0−L′0‖ ≤ f(δ) such that eL

′
0 is a quantum

channel. (f(δ) is a strictly increasing function of δ which will be specified later.)
Question: Assert either that:

• for some map L′0 with ‖L′0 − L0‖ ≤ δ, there exists a set of integers {mc}
such that L′m as defined in Eq. (9) satisfies Lemma 8;

• for some map L′0 where eL
′
0 is a quantum channel and ‖L′0 − L0‖ ≤ δ, no

such L′m exists.

The bound f(δ) in the promise will be a somewhat complicated monotonically
increasing function of δ whose definition we defer until later (see Theorem 16),
when it will make more sense. But, essentially, the promise guarantees that
L0 is close to the generator of some CPT map. This definition of LINDBLAD

GENERATOR might appear somewhat arbitrary. And indeed it would be, were
we interested in the problem of deciding Lindblad form per se. (In that case, it
would make more sense to replace the promise by an extra assertion, analogous
to the third assertion of MARKOVIAN MAP.) But we will only use LINDBLAD

GENERATOR as a stepping-stone to results concerning MARKOVIAN CHANNEL

and MARKOVIAN MAP, and the above definition fulfils this purpose. In a slight
abuse of terminology, we will also refer to maps L0 for which there exists an Lm
satisfying Lemma 8 as Lindblad generators, even if L0 itself is not of Lindblad
form.

The preceding discussion suggests that LINDBLAD GENERATOR and
MARKOVIAN MAP are equivalent. Clearly, the map E = eL0 is Markovian iff there
exists at least one Lm satisfying Lemma 8. However, a little care is required in
order to show that the reductions in both directions can be performed efficiently.
In particular, we must show that appropriate precision parameters ε and δ can
be computed efficiently, as well as accounting for the fact that the exponential
and logarithm can not be computed to infinite precision. This will require strong
continuity properties of the matrix exponential and logarithm, and whilst these
are easily established in the case of the exponential, they are somewhat more
complicated to establish for the logarithm.∗

∗Ref. [35] contains a nice discussion that gives some insight into why this should be.
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A proof of Lipschitz continuity of the exponential can be found in standard
texts (see e.g. Ref. [36, Corollary 6.2.32]).

Lemma 11 For any matrices A and B and any matrix norm ‖.‖∥∥eA − eB∥∥ ≤ exp(‖A‖) exp(‖A−B‖) ‖A−B‖ . (12)

For the logarithm, we will need the following definition and theorems from
Refs. [37] and [38].

Definition 12 For closed linear operators A,B on a Banach space, define

d(A,B) = max[δ(A,B), δ(B,A)], (13)
δ1(A,B) = sup

0<λ≤1
δ(λA, λB), (14)

d1(A,B) = max[δ1(A,B), δ1(B,A)], (15)

(taken directly from Refs. [37, 38], following the notation of Ref. [38]). δ(A,B) is
Kato’s δ measure [37, IV.§2.4].∗

Note that none of these measures obey the triangle inequality, so none are proper
distance measures (though they can readily be turned into such; see Ref. [37,
IV.§2.2,2.4]). The following theorem shows that, on bounded operators, the topol-
ogy generated by δ is equivalent to the norm topology of the Banach space (see [37,
§IV, Theorems 2.13 and 2.14]).

Theorem 13 If A and B are bounded operators on a Banach space with norm ‖.‖,
then

d(A,B) ≤ ‖A−B‖ (17)

and, if in addition d(A,B) < (1 + ‖A‖2)1/2,

‖A−B‖ ≤ (1 + ‖A‖2)δ(A,B)

1− (1 + ‖A‖2)1/2δ(A,B)
. (18)

Continuity of the logarithm can now be stated in terms of the distance-like
measures of Definition 12 (see [38, Theorem 3.1]).

∗The distance-like measure d (which Kato calls δ̂) goes variously by the names “gap”, “aperture”
or “opening”. Here,

δ(A,B) = sup
x

dist((x, Ax), G(B)), (16)

whereG(B) is the graph ofB, and the supremum is taken over all x in the domain ofA, normalised
such that ‖x2‖ + ‖Ax‖2 = 1. This distance-like measure generates the correspondingly named
topology. This topology can equivalently be defined as the standard graph topology on the graphs
of the operators.
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Theorem 14 If A,B ∈P1(M) are operators on a Banach space with norm ‖.‖,
then for M > 0

d1(logA, logB) ≤ 134(1 +M2)δ1(A,B), (19)

where D = {A | domA dense} and

P1(M) = {A ∈ D | λ ∈ ρ(A) and (1− λ) ‖R(λ,A)‖ ≤M for λ ≤ 0} (20)

are subsets of operators on the Banach space, R(λ,A) is the resolvent of A, and
ρ(A) its resolvent set.

For the case of finite-dimensional Hilbert spaces that we are concerned with
here, P1(M) becomes the set of complex matrices whose eigenvalues do not lie
on or close to the negative real axis. This amounts to taking the branch-cut of
the logarithm to be along that axis. (Since this rules out zero eigenvalues, these
matrices are also necessarily non-singular.)

Because we defined our computational problems in terms of norm-distance,
rather than the distance-like measures of Definition 12, we need to transform
Theorem 14 into a statement about norm-distance.

Corollary 15 If A,B are bounded operators on a Banach space with norm ‖.‖,
and if kA, kB ∈P1(M) with

k = min
[
1,
(
1342(1 +M)2‖A−B‖2 − ‖A‖2

)1/2
]
, (21)

then

‖logA− logB‖
≤ 134k(1 +M2)

(
1 + k‖A‖+ k‖A−B‖(1 + k2‖A‖2)1/2

)
‖A−B‖ . (22)

Proof Assume first that d(logA, logB) < (1 + ‖ logA‖2)1/2, so that the condi-
tion of Theorem 13 holds and Eq. (18) is valid. From Definition 12, and rearranging
Eq. (18), we have

d1(logA, logB) ≥ δ1(logB, logA) = sup
0<λ≤1

δ(λ logB, λ logA)

≥ δ(logB, logA) ≥ ‖logA− logB‖
1 + ‖A‖+ ‖A−B‖ (1 + ‖A‖2)1/2

(23)
and

δ1(A,B) = sup
0<λ≤1

δ(λA, λB) ≤ sup
0<λ≤1

d(λA, λB)

≤ sup
0<λ≤1

‖λA− λB‖ = ‖A−B‖ .
(24)
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Using these inequalities in Theorem 14 gives Eq. (22) of the Corollary with k = 1,
under the assumption that d(logA, logB) obeys the condition of Theorem 14.

Otherwise, we can rescale A and B until they do obey the condition. Let

0 < k <
(
1342(1 +M2)2‖A−B‖2 − ‖A‖2

)−1/2
. (25)

Then, using Eq. (24) and Theorem 14,

d
(
log(kA), log(kB)

)
≤ d1

(
log(kA), log(kB)

)
≤ 134(1 +M2)δ1(kA, kB)

≤ 134|k|(1 +M2)‖A−B‖ < (1 + |k|2‖A‖2)1/2

= (1 + ‖kA‖2)1/2,

so d
(
log(kA), log(kB)

)
does satisfy the condition of Theorem 14, and by the

preceding argument Eq. (22) applies to ‖ log(kA)− log(kB)‖. But

‖ log(kA)− log(kB)‖ = ‖ logA+ log(k1)− logB − log(k1)‖
= ‖ logA− logB‖,

(26)

which completes the proof. �

Note that if A or B happens to have an eigenvalue on the negative real axis, we
can always rotate the branch-cut, or equivalently the eigenvalues. Multiplying by
a scalar root of unity z rotates the eigenvalues away from the real axis, without
changing the bound in Corollary 15: ‖ log(zA)− log(zB)‖ = ‖ logA− logB‖,
but ‖zA− zB‖ = ‖A−B‖.

We are now in a position to prove the main results of this section.

Theorem 16 MARKOVIAN MAP ≥ LINDBLAD GENERATOR.

Proof Assume first that we are given an instance (L0, δ) of LINDBLAD GENER-
ATOR that is unambiguous, i.e. either all neighbouring generators of channels
are Lindblad generators, or none are. In that case we know that one or other of
the assertions is valid, but not both. Now, using Corollary 15, we can calculate
(efficiently) an ε such that for logE = L0, logE ′ = L′0, and ‖E − E ′‖ ≤ ε, we
have ‖ logE − logE ′‖ ≤ δ. (Indeed, it is not difficult to solve Eq. (22) for ε and
obtain an explicit expression.) Then the pre-image of an ε-ball around E = eL0

is contained within the δ-ball around L0 (as illustrated in Fig. 1). Since a map
E ′ = eL

′
0 is Markovian iff L′0 is a Lindblad generator, and we are assuming the

LINDBLAD GENERATOR instance is unambiguous, any channels within this ε-ball
must either all be Markovian or all be non-Markovian.

To deal with the fact that E = eL0 can not be calculated to infinite precision, let
Ẽ be the exponential of L0 calculated to within precision ε/3 (which can be done
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L0

exp

2ε
3

δ

ε

Ẽ
E

Figure 1: The pre-image of an ε-ball around E = eL0 is contained within a δ-ball around L0. If Ẽ
is within ε/3 of E, then everything within a 2ε/3-ball around Ẽ is within the ε-ball around E.

efficiently [39]); i.e. ‖Ẽ−E‖ ≤ ε/3. IfE ′ is within a 2ε/3-ball around Ẽ, we have
‖E ′−E‖ ≤ ε. Therefore, assuming for the moment that there exists some channel
within this ball (i.e. assuming its third assertion is not valid), the MARKOVIAN MAP

instance (Ẽ, 2ε/3, ε′) with any ε′ ≤ 2ε/3 will return its first (second) assertion
iff the first (second) assertion of the original LINDBLAD GENERATOR instance
was valid (always under the assumption that the original LINDBLAD GENERATOR

instance was unambiguous). This is illustrated in Fig. 1.
We must now justify the assumption that the third assertion of the MARKOVIAN

MAP instance (Ẽ, 2ε/3, ε′) is always false. Recall that the LINDBLAD GENERATOR

promise guarantees existence of a generator L′0 of a quantum channel within an
f(δ)-ball around L0. For the assumption to be justified, this must imply existence
of at least one quantum channel within an ε′-ball around Ẽ. We now take f(δ)
to be defined implicitly using Lemma 11, such that for ‖L0 − L′0‖ ≤ f(δ) we
have ‖eL0 − eL′

0‖ ≤ ε/3. (Once again, substituting the explicit expression for ε
into Eq. (22) and solving for f(δ) would give an explicit definition for the latter,
if so desired.) Then ‖Ẽ − E ′‖ ≤ 2ε/3, so that E ′ fulfils the requirements with
ε′ = 2ε/3. Figure 2 illustrates this.

Finally, it remains to consider the case of LINDBLAD GENERATOR instances
that are ambiguous; i.e. there exist generators of both Markovian and non-Markovian
channels within a δ-ball around L0. In that case, the MARKOVIAN MAP instance
(Ẽ, 2ε/3, ε′ = 2ε/3) could return either assertion. But the original LINDBLAD

GENERATOR instance is also allowed to return either assertion in this case, which
completes the proof of the reduction. �

Theorem 17 LINDBLAD GENERATOR ≥ MARKOVIAN CHANNEL.

Proof The reduction from MARKOVIAN CHANNEL to LINDBLAD GENERATOR

is very similar to the proof of Theorem 16, reversing the roles of Lemma 11 and
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f(δ)

L0

Ẽ
ε
3

E

exp

Figure 2: Everything within an f(δ)-ball around L0 is mapped into an ε/3-ball around E, which
itself is contained within a 2ε/3-ball around Ẽ. (See also Fig. 1.)

Corollary 15. The LINDBLAD GENERATOR promise is automatically fulfilled,
since L0 = logE is itself necessarily a generator of a quantum channel (namely,
E). �

Together, Theorems 7, 16 and 17 imply the following corollary:

Corollary 18 LINDBLAD GENERATOR = MARKOVIAN MAP = MARKOVIAN

CHANNEL.

4 NP-hardness
We are now in a position to consider the computational complexity of the problems
defined in the previous sections. Although the ccp condition of Eq. (5) is an integer
semi-definite program, and it is well known that even linear integer programming
is NP-complete, this by no means proves that LINDBLAD GENERATOR is NP-hard.
Linear programming is the special case of semi-definite programming in which
the coefficient matrices are diagonal. But the matrices L0 and Ac in a LINDBLAD

GENERATOR instance must satisfy a number of highly non-trivial constraints, as
listed in Lemma 9, which certainly cannot be satisfied by diagonal matrices. Instead,
our approach will be to restrict to a special case of LINDBLAD GENERATOR, for
which the relation between L0 and LΓ

0 is somewhat easier to analyse, then show
that this special case can be used to encode 1-IN-3SAT, a standard NP-complete
satisfiability problem, simpler even than its better-known cousin 3SAT in that it
does not require any boolean negation:∗

∗Note that the use of the term 1-in-3SAT is not entirely consistent in the literature. Here we
mean the variant that does not involve any negation, as originally formulated in Ref. [40].
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Problem 19 (1-in-3SAT)
Instance: (nv, nC): nv boolean variables; nC clauses each with exactly 3 vari-
ables.
Question: Is there a truth assignment of the variables such that each clause
contains exactly one true variable?

1-IN-3SAT can be transformed into a set of simultaneous linear integer inequal-
ities in the standard way. Identify each boolean variable with an integer variable
mc, and identify the values 1 and 0 with “true” and “false”. For each mc, write the
inequalities

mc ≥ −
1

2
, −mc ≥ −

7

6
, (27)

and for each 1-IN-3SAT clause involving variables i, j and k, write the following
inequalities:

mi +mj +mk ≥
1

2
, −mi −mj −mk ≥ −

3

2
. (28)

The non-integer constants are chosen for later convenience. These inequalities are
satisfied for integer mc if precisely one mi from each clause is equal to one and
the others are all zero.

We now restrict L0 and Ac to have the following special forms:

L0 =
∑
i,j

Qi,j |i, i〉〈j, j| +
∑
i 6=j

Pi,j |i, j〉〈i, j| , (29)

Ac = 2π
∑
i 6=j

Bc
i,j |i, i〉〈j, j| , (30)

with

Q =
∑
r

xrx
T
r ⊗

(
1 1
1 1

)
⊗
(
k + λr λr
λr k + λr

)
+
∑
c

vcv
T
c ⊗

(
1 −1
−1 1

)
⊗
(
k −1

3
1
3

k

)
(31)

+
∑
c′

vc′v
T
c′ ⊗

(
1 −1
−1 1

)
⊗
(
k 0
0 k

)
,

Bc = vcv
T
c ⊗

(
1 −1
−1 1

)
⊗
(

0 1
−1 0

)
.. (32)

{xr} and {vc,vc′} are two complete sets of mutually-orthogonal, real vectors,
whilst k and λr are real. Note that Q and Bc are normal matrices, as are L0 and Ac.
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Q1,1 Q1,2 Q1,3 · · ·

P

Q2,1 Q2,2 Q2,3 · · ·

P

Q3,1 Q3,2 Q3,3 · · ·
...

...
... . . .


∼=



Q

P


Figure 3: The structure of L0 from Eq. (29) is most apparent if we reorder the rows and columns so
that all the (i, i), (j, j) elements are in the top, left corner. We can then think of L0

∼= Q⊕ diagP
as being composed of a matrix Q and a vector P .



Bc
1,1 Bc

1,2 Bc
1,3 · · ·

Bc
2,1 Bc

2,2 Bc
2,3 · · ·

Bc
3,1 Bc

3,2 Bc
3,3 · · ·

...
...

... . . .


∼=



Bc

0
0

. . .
0


Figure 4: Reordered in the same way, Ac from Eq. (30) is composed of just a matrix part: Ac

∼=
Bc ⊕ 0.
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Since [L0, A
†
c] = 0, the {Lm = L0 +

∑
cmcAc} are also normal. The factor of 2π

in Eq. (30) is for later convenience. Figures 3 and 4 give a graphical representation
of the structure of L0 and Ac.

It is a simple matter to verify that the properties required by Lemma 9 are
indeed satisfied by the forms given in Eqs. (29)–(32), as long as

wTQ = 0, (33)

and P = P † is Hermitian, where w = (1, 1, . . . , 1)T/
√
d for d × d-matrix Q.

Furthermore, the ccp condition of Lemma 8 reduces to the pair of conditions

2π
∑
c

Bc
i,jmc +Qi,j ≥ 0, i 6= j, (34a)

(1−wwT )K(1−wwT ) ≥ 0, (34b)

where K denotes the d× d-dimensional matrix with diagonal elements Ki,i = Qi,i

and off-diagonal elements Ki 6=j = Pi,j .
We encode the 1-IN-3SAT inequalities of Eqs. (27) and (28) by writing them

directly into the {vc}. We associate a single vc to each boolean variable of the
problem. For each clause l, write a “1” in the l’th element of the three vc’s
corresponding to the variables appearing in that clause, and write a “0” in the
same element of all the other vc. Since there are nC clauses in total, at the end
of this process the vectors each have nC elements. Now for each vc, write a “1”
in its nC + c’th element, writing a “0” in the corresponding element of all the
other vectors. So far, we have defined the first nC + nv elements of the vectors.
Finally, extend the vectors so that they are mutually orthogonal and all have the
same Euclidean norm vTc vc. This can always be done, and will require at most
a further nv elements, producing vectors with at most nC + 2nv elements. This
procedure encodes the coefficients for the 1-IN-3SAT inequalities into some of the
on-diagonal 4× 4 blocks of the Bc. Specifically, if we imagine colouring Bc in a
chess-board pattern (starting with a “white square” in the top-leftmost element),
then the coefficients for one inequality are duplicated in all the “black squares” of
one 4× 4 block (see Fig. 5).

Colouring Q in the same chess-board pattern, the contribution to its “black
squares” from the first term of Eq. (31) is generated by the off-diagonal elements
λr: ∑

r

xrx
T
r ⊗

(
1 1
1 1

)
⊗
(
· λr
λr ·

)
= S ⊗

(
1 1
1 1

)
⊗
(
· 1
1 ·

)
. (35)

The dots emphasise that these entries will be specified subsequently. Since {xr}
and {λr} can be chosen freely, the first tensor factor in this expression is just the
eigenvalue decomposition of an arbitrary real, symmetric matrix S. If we choose
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Bi, Bj, Bk =



. . .

1 −1

−1 1

−1 1

1 −1
. . .



.

Figure 5: If the n’th 1-IN-3SAT clause involves variables i, j, k, the construction encodes the
coefficients from the inequalities of Eqs. (28) into the n’th on-diagonal 4× 4 block of Bi, Bj and
Bk. All other Bc corresponding to variables that do not appear in that clause will have zeros in that
particular block.

Bc =



. . .

1 −1

−1 1

−1 1

1 −1
. . .



.

Figure 6: Each Bc contains a unique block of non-zero entries in the second set of on-diagonal
4× 4 blocks, corresponding to the 1-IN-3SAT boolean constraints of Eqs. (27).
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the first nC diagonal elements of S to be 1/2, and choose the next nv diagonal
elements of S to be 5/6, then it is straightforward to verify that the equations in
the ccp condition of Eq. (34a) corresponding to the “black squares” in on-diagonal
4 × 4 blocks are exactly the 1-IN-3SAT inequalities of Eqs. (27) and (28) (see
Figs. 7 and 8). Note that the off-diagonal elements of S are not specified yet.

We have successfully encoded the correct coefficients and constants into certain
matrix elements of Bc and Q. But all the other elements of these matrices also
generate inequalities via Eq. (34a). To “filter out” these unwanted inequalities, we
choose the remaining diagonal elements and all off-diagonal elements of the sym-
metric matrix S to be large and positive, thereby ensuring all unwanted inequalities
are slack.

The matricesAc from Eq. (30) automatically satisfy the normalisation condition
of Lemma 9, but L0, as constructed so far, will not. We use the “white squares” of
Q (see Figs. 7 and 8), generated by the diagonal elements in the third tensor factors
of Eq. (31), to renormalise the column sums to zero. Recall that both {xr} and
{vc,vc′} are complete sets of mutually orthogonal vectors. Rearranging Eq. (31),
Q is therefore given by

Q = k1+S⊗
(

1 1
1 1

)
⊗
(

1 1
1 1

)
+
∑
c

vcv
T
c ⊗

(
1 −1
−1 1

)
⊗
(

0 −1
3

1
3

0

)
. (37)

Now, the only requirement on the off-diagonal elements of S is that they be
sufficiently positive. Also, from the form of Eq. (37), the columns in any individual
4 × 4 block of Q sum to the same value. Thus, by adjusting the elements of
S, we can ensure that all columns of Q − k1 sum to the same positive value,
which we call σ. Choosing k = −σ, the negative on-diagonal element in each
column (generated by the k1 term) will cancel the positive contribution from the
off-diagonal elements, thereby satisfying the normalisation condition, as required.

Finally, we must ensure that the second ccp condition of Eq. (34b) is always
satisfied, for which we require a simple lemma.

Lemma 20 If D ≥ −σ1 is a diagonal d× d-dimensional matrix, then there exists
a symmetric matrix P such that Pi,i = 0 for all i and

(1−wwT )(D + P )(1−wwT ) ≥ 0, (38)

where w = (1, 1, . . . , 1)T/
√
d.

Proof Choose P = α(1−wwT ) + α(1− d)wwT . Then the diagonal elements
of P are

Pi,i = α

(
1− 1

d

)
+ α(1− d)

1

d
= 0, (39)
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Q =



. . .

−1
2

3
2

3
2

−1
2

3
2

−1
2

−1
2

3
2

. . .



.

Figure 7: The first set of on-diagonal 4× 4 blocks of Q contain the constants for the 1-IN-3SAT
clause inequalities of Eqs. (28). . .

Q =



. . .

1
2

7
6

7
6

1
2

7
6

1
2

1
2

7
6

. . .



. (36)

Figure 8: . . . whilst the second set of on-diagonal 4× 4 blocks of Q contain the constants for the
1-IN-3SAT boolean inequalities of Eqs. (27).
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and
(1−wwT )(D + P )(1−wwT ) ≥ (α− σ)(1−wwT ), (40)

which is positive semi-definite for α ≥ σ. �

The coefficients Pi,j in Eq. (29) can be chosen freely, since these coefficients
play no role in either the normalisation or in encoding 1-IN-3SAT, so the matrix P
in the ccp condition of Eq. (34b) can be chosen to be any matrix with zeros down
the main diagonal. Eq. (34b) is exactly of the form given in Lemma 20 with

Di,i = Qi,i (41)

and choosing P accordingly ensures that it is always satisfied.
In the discussion preceding the definition of LINDBLAD GENERATOR, we ar-

gued that we need only consider non-singular, non-degenerate channels. Generators
of such channels are necessarily bounded and non-degenerate as well, and the proof
of equivalence of LINDBLAD GENERATOR and MARKOVIAN MAP, leading to
Theorem 16, breaks down if these properties do not hold, since additional branches
of the matrix logarithm arise: applying an arbitrary similarity transformation to
a degenerate Jordan block will give another logarithm. The matrix L0 we have
constructed is clearly bounded, but it is highly degenerate.

We will now slightly modify the above construction, removing the mentioned
degeneracies. In fact, most of the degeneracies can easily be lifted by as large
a margin as desired by perturbing suitable elements of L0, without affecting the
conditions of Lemma 9. The only ones that require more care are degeneracies due
to the final two terms of Eq. (31), as some of those matrix elements were used to
encode 1-IN-3SAT.

It is not difficult to verify that mc will be constrained to the same set of integer
values if the perturbation to any constant in the set of inequalities is less than
1/6 (the second inequality in Eqs. (27) being the most sensitive). The constants
are given directly by matrix elements of L0, so we are free to lift the remaining
degeneracies in L0 by perturbing each summand in the final two terms of Eq. (31)
by a different amount, as long as we ensure that no element of L0 is perturbed by
more than 1/6. This can be achieved by perturbing each off-diagonal element∗ of
the final tensor factor by a different integer multiple of

2

9d

(
0 −1
1 0

)
. (42)

No element of L0 is then perturbed by more than 1/18 (this is deliberately stricter
than necessary by a factor of three, for reasons that will become clearer later), and
the minimum eigenvalue separation for the perturbed L0 is 2/(9d).

∗We avoid perturbing the diagonal elements, as that would make satisfying the normalisation
condition far more difficult.
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By construction, L0 is a Lindblad generator iff the original 1-IN-3SAT instance
was satisfiable, so we have achieved the first half of the reduction. It remains to
choose a value of δ such that this also holds for any L′0 in the δ-ball around L0.
As noted above, the inequalities in Eqs. (27) and (28) are insensitive to small
perturbations. Specifically, one can verify that the set of feasible mc will be
unchanged if each coefficient and constant (this time including zero coefficients,
i.e. coefficients of variables that do not appear explicitly in Eqs. (27) and (28)) is
perturbed by less than min[1/18(nv + 1), 5/18(2nv + 1)]. (Recall that we already
perturbed the constants by (up to) 1/18 to lift eigenvalue degeneracies. This bound
is deliberately stronger by a factor of two than would appear to be necessary at this
stage, but in any case it is certainly stronger than is strictly necessary.)

The constants in the inequalities are given by matrix elements of L0. If we
choose the norm in LINDBLAD GENERATOR to be the l∞ norm, then is is sufficient
to require

δ ≤ min

[
1

18(nv + 1)
,

5

18(2nv + 1)

]
. (43)

The coefficients in the inequalities are given by matrix elements of Ac, which
are formed from the eigenvectors of L0. Thus, to bound perturbations of the
coefficients, we must bound perturbations of the eigenvectors in terms of the
perturbation to L0, which is less trivial. We will need the following result from
Ref. [41], and a simple corollary.

Lemma 21 Suppose A is a normal matrix, with E an arbitrary matrix of the same
dimension. Let Q = (v1, Q2) be unitary, such that v1 is an eigenvector of A, and
partition the matrix Q†EQ conformally with Q†AQ, so that∗:

Q†AQ =

(
λ1 0
0 A2,2

)
, Q†EQ =

(
E1,1 E1,2

E2,1 E2,2

)
, (44)

where {λi} denote the eigenvalues of A, with λ1 the eigenvalue associated with v1.
Let

∆ = min
i 6=1
|λ1 − λi| − ‖E1,1‖F − ‖E2,2‖F , (45)

where ‖X‖2
F =

∑
i,j |Xi,j|2 is the Frobenius (or Hilbert-Schmidt) norm. If ∆ > 0,

and
‖E2,1‖F ‖E1,2‖F

∆2
≤ 1

4
, (46)

then there exists a matrix P satisfying

‖P‖F ≤ 2
‖E2,1‖F

∆
(47)

∗Q†AQ must be of this form, as the Schur decomposition of a normal matrix is diagonal.
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such that v′ = (v1 +Q2P )(1+ P †P )−1/2 is a unit eigenvector of A+ E (in the
Frobenius norm).

Proof This is a slight generalisation of Theorem 8.1.12 from Ref. [42], or slight
restriction of Theorem 4.11 from Ref. [41], to the case of normal A. �

Corollary 22 Suppose A is a normal matrix, with E an arbitrary matrix of the
same dimension. If v is a unit (in Frobenius norm) eigenvector of A associated
with a non-degenerate eigenvalue, and the requirements of Lemma 21 are fulfilled,
then there exists a unit eigenvector v′ of A+ E such that∥∥vv† − v′v′†

∥∥
F
≤ K ‖E‖F , (48)

with

K =
4
(
d ‖E‖F +

√
d− 1∆

)
∆2 − 4 ‖E‖2

F

(49)

and ∆ as defined in Lemma 21.

Proof From Lemma 21, we have∥∥v′v′† − vv†
∥∥

F
=

∥∥∥∥(v1 +Q2P )(v1 +Q2P )†

1+ P †P
− v1v

†
1

∥∥∥∥
F

(50)

≤ 2‖v‖F‖Q2‖F + ‖P‖F (‖v‖2
F + ‖Q2‖2

F)

1− ‖P †P‖F

‖P‖F (51)

≤ 2
√
d− 1 + d‖P‖F

1− ‖P‖2
F

‖P‖F. (52)

in which we have used Lemma 2.3.3 from Ref. [42] to bound (1+P †P )−1, and the
fact that ‖U‖F =

√
d for any d× d unitary U . The result follows by substituting

the bound on ‖P‖F from Lemma 21, and using ‖E2,1‖F ≤ ‖E‖F. �

Now, each Ac is a sum of two eigenprojectors, and L0 happens to be normal.
Applying Corollary 22, and using the fact that ‖X‖∞ ≤ ‖X‖F, we see that it
suffices to restrict

δ ≤ 1

2K
min

[
1

18(nv + 1)
,

5

18(2nv + 1)

]
. (53)

We must also satisfy the two requirements of Lemma 21. Recalling that the
minimum eigenvalue separation of L0 is 2/(9d), we see that it is sufficient to
impose

δ <
1

9d2
and δ ≤ mini 6=j |λi − λj|

4d
=

1

18d
. (54)
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For L0, satisfying the inequalities is equivalent to satisfying the ccp condition
of Lemma 8. However, even choosing δ to satisfy Eqs. (43), (53) and (54), this
may no longer be the case for all L′0 within the δ-ball around L0. If the inequalities
are infeasible, then at least one diagonal element of any (1− ω)L′m

Γ(1− ω) must
be negative, and it is still the case that the ccp condition is violated (since non-
negativity of the diagonal elements is a necessary condition for a matrix to be
positive semi-definite). But if the inequalities can be satisfied, the most we can say
is that all diagonal elements of (1− ω)L′m

Γ(1− ω) are lower-bounded by 1/18.
Now

L′m = L′0 +
∑
c

mcA
′
c (55)

with 0 ≤ mc ≤ 1 integer, and the A′c are perturbations of Ac. The off-diagonal
elements of the latter are zero. Therefore, we can control the magnitude of the
off-diagonal elements of the nv different A′c by applying Corollary 22 again, whilst
controlling the off-diagonal elements of L′0 by restricting δ directly, as before.
Putting all this together, we see that imposing

δ ≤ 1

18d
and δ ≤ 1

32Knvd
(56)

ensures that the off-diagonal elements of any L′m are upper-bounded by 1/(18d).
However, this implies that (1− ω)L′m

Γ(1− ω) is diagonally-dominant, which is
sufficient to guarantee positive-semi-definiteness.

Thus, if δ > 0 is chosen to satisfy Eqs. (43), (53), (54) and (56), then for
any L′0 within a δ-ball around L0 (in the l∞ norm), satisfying the ccp condition is
equivalent to satisfying the original 1-IN-3SAT problem. Comparing the bounds
on δ from Eqs. (43), (53), (54) and (56), we have

δ = O(n−1
v (nC + 2nv)

−3). (57)

Sufficient bounds for any other norm can easily be obtained via equivalence of
norms in finite-dimensional spaces, and will at worst introduce additional factors
polynomial in the dimension (i.e. polynomial in nv and nC). The fact that δ−1 has
to scale only polynomially makes our results far more compelling; it cannot be
claimed that they are a consequence of unreasonable precision demands. Even this
mild scaling may be an artifact of the construction, and it would be interesting to
know if a construction exists in which δ can be taken constant.

Finally, it remains to consider the promise required in the definition of LIND-
BLAD GENERATOR. Assume that the promise is not satisfied. In that case, L0 itself
clearly cannot be the generator of a CPT map. But L0 satisfies the Hermiticity and
normalisation requirements of Lemma 8 by construction, so it must fail to satisfy
the ccp condition. Thus failing to satisfy the promise implies that the 1-IN-3SAT
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instance must have been unsatisfiable. Combining the arguments used in the proofs
of Theorems 7 and 16 gives an efficient procedure for deciding whether (L0, δ)
satisfies the promise, thereby deciding these instances. This leaves only instances
that do satisfy the promise, as required.

We have reduced satisfiable instances of 1-IN-3SAT to LINDBLAD GENER-
ATOR instances that return the first assertion, and have either efficiently decided
unsatisfiable instances of 1-IN-3SAT (because they fail to satisfy the promise)∗, or
reduced them to LINDBLAD GENERATOR instances that return the second assertion.
This completes the proof that

Lemma 23 1-IN-3SAT ≤ LINDBLAD GENERATOR

and, since 1-IN-3SAT is NP-complete,

Corollary 24 LINDBLAD GENERATOR is NP-hard.

But, by the chain of equivalences proven in Theorem 7 and Corollary 18, this
implies our main result:

Theorem 25 MARKOVIAN CHANNEL and MARKOVIAN MAP are NP-hard.

Theorem 25 tells us that the Markovianity problem is NP-hard. What of
the more general question of determining whether a given family of maps are
members of the same continuous, one-parameter, completely positive semi-group?
Formulated rigorously, this is a generalised version of MARKOVIAN MAP, in which
a family of maps Et is given, along with their associated times t (up to some
precision), and the answer should assert the existence or otherwise of a common
Lindblad generator for all the maps up to precision ε > 0 (or assert that at least
one of the Et is not CPT up to precision ε′ > 0).

A first trivial observation is that, since we know there exists a special case of
this problem that is NP-hard, namely MARKOVIAN MAP itself, the general problem
is automatically NP-hard. However, this leaves open the question of whether the
complexity depends on the number of maps in the family. Recalling the physical
motivation behind the problem, one might expect that, given more information
about the dynamics (e.g. by taking many tomographic snapshots), the problem
would become easier to resolve.

In fact, in proving the NP-hardness of MARKOVIAN MAP, we have already
done all the work necessary to prove NP-hardness of the general problem for any
number of maps. Instead of computing a single map E = eL to reduce LINDBLAD

GENERATOR to MARKOVIAN MAP, we can compute a family of any number
of maps Et = eLt. (To make this rigorous, the arguments of Theorem 16 can

∗It is amusing, but probably of no practical value, to note that this provides a new “gadget” for
efficiently deciding certain non-satisfiable instances of 1-IN-3SAT.
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straightforwardly be extended to the case of a family of maps Et.) So the problem
for an arbitrary (finite) number of maps is essentially no different to the problem
for a single map as far as the worst-case complexity is concerned.

5 An Algorithm
The NP-hardness proof of Section 4 implies that we are unlikely to find an efficient
algorithm for solving the Markovianity problem. Nonetheless, there are two reasons
to develop an algorithm for solving it, even though it will be inefficient. The first
reason is in some sense a technicality. We would like to prove that solving the
Markovianity problem is equivalent to solving P=NP. That is, we want to show that
(i) any efficient algorithm for solving the Markovianity problem would imply P=NP,
and conversely (ii) if P=NP then there exists an efficient algorithm for solving
the Markovianity problem. NP-hardness proves (i). But the weak-membership
formulations of the Markovianity problem (MARKOVIAN CHANNEL/MAP) are
not technically members of the class NP, thus it is not clear whether proving P=NP
would be sufficient to provide an efficient algorithm for solving them. Weak-
membership problems do not belong to NP, for the simple reason that NP is a
decision class, but weak-membership problems are not decision problems since
they have instances in which both “yes” and “no” answers are simultaneously valid.
Giving an explicit algorithm for MARKOVIAN CHANNEL which reduces to solving
an NP-complete problem resolves this technicality.

The second reason for developing an algorithm is that the NP-hardness proof
of Section 4 requires the dimension to scale polynomially with the size of the 1-IN-
3SAT problem being encoded. So, although the general Markovianity problem
for CPT maps and embedding problem for stochastic matrices are NP-hard, it is
interesting to ask how the complexity scales if the dimension is fixed (in which case
the problem size scales only with the precision). By giving an explicit algorithm, we
show that for fixed dimension the Markovianity problem can be solved efficiently,
i.e. the complexity scales only polynomially with the precision. This is also the
basis for the proposed measure of Markovianity in Ref. [7].

One motivation for considering the case of fixed dimension is current experi-
mental limitations. A snapshot of a quantum evolution is measured by performing
full quantum process tomography. Tomography of a d–dimensional system requires
measuring a total of d4 − d2 different expectation values [1, §8.4.2], and the expec-
tation value of each observable must be estimated by averaging over many runs.
The experimental overhead for all of this scales polynomially with the dimension
of the system, but a polynomial scaling can still be prohibitive in practice! Current
experiments can only perform full process tomography for systems up to a few
qubits, before the time required becomes exorbitant. It is quite reasonable in this
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context to regard dimension as a fixed parameter.
Since MARKOVIAN MAP is equivalent to MARKOVIAN CHANNEL by Theo-

rem 7, a MARKOVIAN MAP instance can be solved by first efficiently reducing it to
MARKOVIAN CHANNEL, then solving the MARKOVIAN CHANNEL instance. We
now describe an algorithm which solves MARKOVIAN CHANNEL in polynomial
time for fixed dimension. (The present treatment presents a detailed and rigorous
proof of the result already reported in Ref. [7].) It is not difficult to adapt this algo-
rithm to the classical EMBEDDABILITY problem. For convenience, we will take
the matrix norm in the definition of MARKOVIAN CHANNEL to be the Frobenius
norm ‖.‖F.∗

Algorithm 26 (MARKOVIAN CHANNEL)
Input: (E, ε): Quantum channel E, precision ε.
Output: One of the two assertions from Problem 5.

1: Calculate approximations L̄0 and Āc to L0 = logE and Ac (cf. Lemma 8) to
any precision κ, so that ‖L̄0−L0‖F ≤ κ and ‖Āc−Ac‖F ≤ κ (L̄0 and Āc can
be obtained e.g. by calculating the eigenvalues and eigenvectors of E).

2: Calculate δ̃ by solving

exp
(
‖L̄0‖F +M

∑
c

‖Āc‖F

)
exp
(
κ+

Mdκ

2

)
δ̃ eδ̃ = ε, (58)

where M depends polynomially on ε (discussed in more detail below) and d is
the dimension of E.

3: Calculate approximations λ̃i to the logarithms λi of eigenvalues eλi of E, and
to the eigenprojectors |r̃i〉〈l̃i| of E, to precision sufficient to ensure that∥∥∥∥∑

i

λ̃i |r̃i〉〈l̃i| −
∑
i

λi |ri〉〈li|
∥∥∥∥ ≤ δ̃

12d‖1− ω‖3
F

, (59)

∥∥∥|r̃i〉〈l̃i| − |ri〉〈li|∥∥∥
F
≤ δ̃

24πMd2‖1− ω‖3
F

, (60)

|λ̃i − λi| < min
j 6=k

λ̃j − λ̃k
4

. (61)

4: Use the results to calculate L̃0 =
∑

i λ̃i |r̃i〉〈l̃i| and the corresponding Ãc (cf.
Lemma 8).

5: Solve the following mixed integer semi-definite program, in integer variables

∗It is straightforward to generalise these results to other norms.
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mc and real variable t:

minimise t

subject to (1− ω)L̃0
Γ(1− ω) +

∑
c

mc(1− ω)Ãc
Γ(1− ω) + t1 ≥ 0.

6: if t ≤ −δ̃/(6d‖1− ω‖F) then
7: return “Markovian” (1st assertion of Problem 5).
8: else if t > δ̃/(6d‖1− ω‖F) then
9: return “non-Markovian” (2nd assertion of Problem 5).

10: else if t ≤ δ̃/(3d‖1− ω‖F) then
11: return “Markovian” (1st assertion of Problem 5).
12: end if

To prove correctness of Algorithm 26, first note that, from lines 2 to 4,
‖L̃0 − L0‖F ≤ δ̃/(12d‖1 − ω‖3

F). Also, if maxcmc ≤ M , then from line 3
we have

‖L̃m − Lm‖F ≤ ‖L̃0 − L0‖F + 2π
∑
c

|mc|‖ |r̃i〉〈l̃i| − |ri〉〈li| ‖F

=
δ̃

6d‖1− ω‖3
F

.

(62)

We will assume throughout the following that M is an upper bound on the values
mc returned by the integer program of line 5, i.e. that maxc |mc| ≤ M < ∞, an
assumption that will be justified later.

Now consider the three cases in lines 6 to 11. To deal with the first two, we
will need the following simple lemma (see e.g. Ref. [43, Corollary 6.3.4]):

Lemma 27 Let A be normal, E be an arbitrary matrix. If λ′ is an eigenvalue of
A+ E, then there exists some eigenvalue λ of A such that |λ′ − λ| ≤ ‖E‖F.

If t ≤ −δ̃/(6d‖1− ω‖F), then, from the definition of the integer program in line 5
of Algorithm 26, we know that all eigenvalues of (1−ω)L̃Γ

m(1−ω) are greater than
δ̃/(6d‖1−ω‖F). Also, from Eq. (62), ‖(1−ω)(L̃Γ

m−LΓ
m)(1−ω)‖F ≤ δ̃/(6d‖1−

ω‖F). Lemma 27 then implies that the minimum eigenvalue of (1−ω)LΓ
m(1−ω) is

non-negative, i.e. Lm is ccp. L0 is therefore a Lindblad generator by Lemma 8, thus
the original channel E must itself be Markovian. Similarly, if t > δ̃/(6d‖1−ω‖F),
then the minimum eigenvalue of any (1− ω)LΓ

m(1− ω) is strictly negative. Thus
all Lm fail the ccp condition of Lemma 8, L0 is not a Lindblad generator, and the
original channel E is non-Markovian.

Dealing with the final case in line 10 of Algorithm 26 requires the following
result:
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Lemma 28 If L is Hermitian and normalised (in the sense of Lemma 8), and the
minimum eigenvalue of (1− ω)LΓ(1− ω) is bounded by λmin ≥ −ε, then there
exists a Lindblad generator L′ such that ‖L′−L‖F ≤ ε d ‖1−ω‖F, where d is the
dimension of L.

Proof Consider the map L′ = L + ε(dω − d1). Since L is Hermitian and
normalised in the above sense, we have (L′Γ)† = L′Γ and 〈ω| L′ = 0, so these
properties carry over to L′. But we also have

(1− ω)L′
Γ
(1− ω) = (1− ω)LΓ(1− ω) + ε(1− ω)(1− d2ω)(1− ω)

= (1− ω)LΓ(1− ω) + ε(1− ω).
(63)

Since (1 − ω)LΓ(1 − ω) has support only on the orthogonal complement of
|ω〉, and (1 − ω) acts as identity on that subspace, the minimum eigenvalue of
(1− ω)L′Γ(1− ω) is non-negative. Thus L′ also satisfies the ccp condition, and,
by Lemma 8, is a Lindblad generator. �

If t ≤ δ̃/(3d‖1− ω‖F), then the minimum eigenvalue of (1− ω)L̃Γ
m(1− ω)

is greater than −δ̃/(3d‖1 − ω‖F), thus Lemma 27 and Eq. (62) imply that the
minimum eigenvalue of (1− ω)LΓ

m(1− ω) is lower-bounded by

λmin ≥ −δ̃/(3d‖1− ω‖F)− δ̃/(6d‖1− ω‖F) = −δ̃/(2d‖1− ω‖F). (64)

Applying Lemma 28 to Lm yields a Lindblad generator L′ such that ‖L′−Lm‖F ≤
d‖1− ω‖Fδ̃/(d‖1− ω‖F) = δ̃ and, since L′ is a Lindblad generator, E ′ = eL

′ is a
Markovian channel. But, using Lemma 11, we have

‖E ′ − E‖F ≤ e‖Lm‖Fe‖L
′−Lm‖F‖L′ − Lm‖F

≤ exp
(
‖L0‖F +M

∑
c

‖Ac‖F

)
δ̃ eδ̃

≤ exp

(
‖L̃0‖F +M

∑
c

‖Ãc‖F

)
exp

(
κ+

Mdκ

2

)
δ̃ eδ̃

= ε,

(65)

(with the inequality in the penultimate line resulting from line 1 of Algorithm 26—
recall that there are at most d/2 matrices Ãc—and the final equality from line 2).
Therefore, E ′ is a Markovian channel within distance ε of the original channel E,
and the first assertion of Problem 5 is valid.

This proves correctness of Algorithm 26. What of its run-time? All but a few
steps can obviously be performed in polynomial-time. Recall that we are assuming,
without loss of generality, that E is non-degenerate and non-singular, which, more
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rigorously stated, requires the condition number of E to be upper-bounded by
some constant. The eigenvalue and eigenvector calculations of E in lines 3 and 1
can therefore be done efficiently in ε−1 and also the dimension [42, §7.2], with the
eigenvalue and eigenvector condition numbers of E [42, §7.2.2–5] contributing a
(possibly large) constant factor.

A question arises in calculating Ãc: L̃0 is not necessarily a Hermitian map, so
how can the eigenvalue pairs from which to form Ãc (cf. Eq. (10)) be identified?
ButL0 is Hermitian, and the bound on |λ̃i−λi| in line 3 ensures that the 2‖λ̃i−λi‖F-
disc around λ∗i , within which the conjugate partner of λi must lie, is guaranteed to
contain a single λ̃j , allowing approximately conjugate pairs of eigenvalues to be
identified.

The key step in the algorithm is the mixed integer semi-definite program in
line 5. (If Algorithm 26 is adapted to solve the classical EMBEDDABILITY problem,
this becomes a mixed linear integer program instead.) In a generalisation of a
famous result by Lenstra [44] for linear integer programming, Khachiyan and
Porkolab proved that for any fixed number of variables, integer semi-definite
feasibility problems can be solved in polynomial time [45, 46]. In our case, fixing
the number of variables corresponds to fixing the system’s dimension. The integer
semi-definite program can therefore be solved by applying the Khachiyan-Porkolab
algorithm to the feasibility problem for given t, combined with binary search on
t. From Corollary 1.3 of Ref. [45], the run-time of the Khachiyan-Porkolab part
scales polynomially with the number of digits of precision to which the elements
of the coefficient matrices are specified. But the coefficient matrices in our case
are L̃0 and Ãc, and their description size is independent of the precision to which
the original E was specified, depending only on the precision parameter ε. So the
run-time of the Khachiyan-Porkolab step scales polynomially in ε−1, as required.

We can now also justify the assumption that an upper bound maxcmc ≤ M
can be placed on the integers mc resulting from the integer program. Theorem 1.1
of Ref. [45] proves that such a bound exists and, in the case of integer semi-definite
programming ([45, Corollary 1.3]), that it scales as

log max
c
|mc| = 2O(d4) log l, (66)

where l is the maximum bit-length of the entries of the coefficient matrices L̃0

and Ãc, and we have translated other parameters into our notation. Since we have
already argued that the size of the description of these matrices scales polynomially
with ε−1, this gives a bound M that scales as

max
c
|mc| = ε(2O(d4))O(1) = M, (67)

i.e. polynomially in ε−1 as claimed.
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Since the calculations in each line of Algorithm 26 have run-times that scale at
most polynomially in ε−1, and are independent of the number of digits to which E
was specified, the entire algorithm has run-time polynomial in the precision and
independent of the size of the description of E. This, together with Theorem 7,
proves the main practical result of this section:

Theorem 29 For any fixed dimension, MARKOVIAN CHANNEL and
MARKOVIAN MAP can be solved in a run-time that scales polynomially in both
the problem size (the size of the description of the channel) and the precision
parameter ε−1.

It is worth remembering that proving an algorithm has polynomial run-time
does not necessarily imply that it is the best algorithm to use in practice. In fact,
considering the first few branches of the logarithm is often sufficient for practically
relevant cases. Indeed, it would be interesting to try to flesh out heuristics or a proof
as to why this simple approach is so successful. If E is an experimentally measured
tomographic snapshot, the truncation errors in computing logE, that Algorithm 26
expends much effort in accounting for, will, in all likelihood, be swamped by
experimental error. It is probably reasonable to calculate L0 and Ac numerically,
without worrying about numerical errors, and solve the resulting mixed integer
semi-definite program using standard integer programming algorithms (which work
well in practise even though their scaling may theoretically not be polynomial in
the precision). If the t thus obtained is comparable to the estimated error, the most
reasonable conclusion is that the experimental data simply are not precise enough
to give any definitive answer. In fact, a more sophisticated answer is to quote the
value of t itself, as it is (related to) a natural measure of “Markovianity”. This is
discussed in more detail in Ref. [7].

All the steps of Algorithm 26 also scale efficiently with the dimension of E,
apart from solving the mixed integer semi-definite program in line 5. Since integer
semi-definite programming is in NP, this (together with Theorem 7) proves the
other main result of this section:

Theorem 30 Solving MARKOVIAN CHANNEL or MARKOVIAN MAP is equiv-
alent to solving P=NP: an efficient algorithm for MARKOVIAN CHANNEL or
MARKOVIAN MAP would imply P=NP; conversely, P=NP would imply existence
of efficient algorithms for MARKOVIAN CHANNEL and MARKOVIAN MAP.

6 The Classical Problem
The classical analogue of the Markovianity problem is called the embedding
problem, but it is much older, dating back to at least 1937 [14]. For a given
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stochastic matrix P , the problem is to determine whether or not P can be embedded
into a continuous-time Markov chain, i.e. whether it is a member of a continuous-
time, one-parameter semigroup of stochastic matrices. Equivalently, does there
exist a generator Q such that P = eQ and eQt is stochastic for all t ≥ 0?

There is a long literature on the embedding problem, of which we do not pre-
sume to give a comprehensive account here. (See [19] for a more extended history.)
Simple necessary and sufficient conditions can easily be derived for 2×2 stochastic
matrices (this result seems to originally have been reported by Kingman [15], who
attributes it to Kendall), the 3× 3 case was eventually solved [47–49], and certain
properties are known for the general case [16, 17, 50]. However, the problem has
remained open in general until now [18, 51].

In order to discuss the complexity of the problem in a rigorous sense, it is
necessary to formulate the embedding problem as a weak-membership problem,
analogous to MARKOVIAN CHANNEL or MARKOVIAN MAP, for the same reasons
discussed in Section 3.1 in relation to the quantum problem:

Problem 31 (Embeddability)
Instance: (P, ε): Stochastic matrix P ; precision ε ≥ 0.
Question: Assert either that:

• for some matrix P ′ with ‖P ′− P‖ ≤ ε, there exists a generator Q′ such that
P ′ = eQ

′
and eQ

′t is stochastic for all t ≥ 0;

• for some stochastic matrix P ′ with ‖P ′ − P‖ ≤ ε, no such Q′ exists.

Again, we could also formulate a variant analogous to MARKOVIAN MAP, which
drops the requirement that the given P be stochastic.

Now, stochastic maps are a special case of CPT maps in the following sense.
The diagonal entries of a density matrix form a probability distribution, and every
stochastic map can be extended to a CPT map whose action on the subspace of
diagonal density matrices is the same as the action of the original stochastic map
on the probability distribution formed by those diagonal elements. For example,
we can take the composition of the CPT map that erases all off-diagonal elements
of the density matrix, with the original stochastic map acting on the diagonal
elements.

However, it does not follow that NP-hardness of the quantum problem implies
NP-hardness of the embedding problem, as that would require precisely the oppo-
site: encoding a CPT map into a stochastic map. But nor would NP-hardness of
the embedding problem imply NP-hardness of the Markovianity problem, since
the above argument showing that any stochastic map can be extended to a CPT
map does not “preserve” embeddability (more precisely, it does not map the
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set of stochastic maps into the set of Markovian CPT maps, and the set of non-
embeddable maps into the set of non-Markovian CPT maps). The embedding
problem for stochastic matrices and the Markovianity problem for CPT maps are
inequivalent problems, and the complexity of each must be resolved separately.

Fortuitously, it turns out that a proof of NP-hardness for the embedding problem
is already “buried” within the NP-hardness proof for the Markovianity problem. We
now give a sketch of the reduction from the NP-complete 1-IN-3SAT problem to
the EMBEDDABILITY problem of Problem 31, which closely follows the analogous
reduction to MARKOVIAN MAP. For a full account, see Ref. [19].

Recall the conditions forQ to be a generator of a continuous-time Markov chain
(a Q-matrix): (i) Qi 6=j ≥ 0, (ii)

∑
iQi,j = 0. Comparing these with the conditions

in Lemma 9 and Eqs. (34a) and (34b) satisfied byQ andBc from Eqs. (31) and (32),
we see that Qm = Q+ 2πmcB

c always satisfy the normalisation condition (ii) for
any integers mc. But, from Eq. (34a) and the discussion thereafter, Qm will satisfy
condition (i) for some mc iff the original 1-IN-3SAT used to construct Q and Bc

was satisfiable. In other words, there exist integers mc such that Qm is a Q-matrix
iff the 1-IN-3SAT problem was satisfiable. But Qm parametrise logarithms of the
same matrix P = eQm . In fact, the only branches of the logarithm that are missing
are branches that could never generate a continuous-time Markov chain in any case.
So, either P is not stochastic (which can easily be checked), in which case the
1-IN-3SAT problem cannot be satisfiable, or P is stochastic, in which case it is
embeddable iff the 1-IN-3SAT problem was satisfiable.

To make this reduction rigorous, Lemma 11 and Corollary 15 must be applied
in very much the same way as in the reduction from LINDBLAD GENERATOR to
MARKOVIAN MAP in Theorem 16, to show that a weak-membership formulation
of the Q-matrix problem can be reduced to the weak-membership formulation
of the EMBEDDABILITY problem (Problem 31). (See Ref. [19] for a detailed
treatment.) Similar arguments to those given at the end of Section 4 show that the
generalisation of the embedding problem to the problem of determining whether a
family of stochastic matrices are all generated by the same continuous-time Markov
process is also NP-hard, for any number of matrices. Finally, it is clear how to adapt
the algorithm of Section 5 to the classical embedding problem, thereby proving
equivalence to P=NP.

7 Conclusions
We have shown that the Markovianity problem for CPT maps and the analogous
embedding problem for stochastic matrices are both NP-hard and, indeed, have
shown full equivalence between solutions to these problems and a solution to the
famous P=NP problem. Therefore, either P=NP, or there exists no efficiently de-
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cidable criterion for deciding whether a CPT map is generated by some underlying
Markovian master equation, that is, whether it is a member of a completely positive
semi-group. Similarly for deciding whether a stochastic matrix can be embedded
in a continuous-time homogeneous Markov process.

An interesting corollary of the NP-hardness proofs for the MARKOVIAN CHAN-
NEL and EMBEDDABILITY weak-membership problems is that:

Corollary 32 Both the set of Markovian and the set of non-Markovian CPT maps
have non-zero measure, as do the sets of embeddable and non-embeddable stochas-
tic matrices, in any finite dimension.

So a randomly chosen CPT map has a finite probability of being non-Markovian,
but also of being Markovian. The analogous property holds for a randomly chosen
stochastic map. Ref. [7] estimates these probabilities numerically for the simplest
quantum case of qubits, i.e. CPT maps on C2. This fact alone may not be so sur-
prising: After all, generators being ccp can have neighbourhoods of generators that
are ccp, which under exponentiation are mapped to neighbourhoods of channels,
giving rise to a finite volume. The above corollary makes this argument rigorous.

One consequence of these results to physics is that to decide whether a given
physical process at a shapshot in time—or for many snapshots for that matter—
is consistent with being forgetful cannot be decided efficiently. This is because
there is no a priori way of knowing whether the dynamics of an open system are
Markovian or not, but finding the dynamical equations (master equations) would
answer this question, and we now know this to be NP-hard for both the classical
and quantum cases, requiring infeasibly long computation time (unless P=NP, of
course). Whether this poses more practical difficulties is less clear. The results of
Section 5 show that it at least does not pose a problem for the current generation of
quantum experiments, since other purely practical limitations on the dimension of
the systems being studied are more significant. More generally, one might argue
that the average-case complexity is more relevant in practice, whereas NP-hardness
only tells us about the worst-case complexity. What is the average-case complexity
of the Markovianity and embedding problems? We close with this intriguing open
problem, which we commend to the reader.
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